Project : Geotechnical Investigation for Biswarjan Ghat, New Town

Bearing Capacity Calculation For Shallow/Well Foundation

Code used:- IS:6403-1981

BH-1 Bore hole data used Depth of Foundation below ground level, 1.30m Width/Diameter of Foundation,B= 3.00m Ratio of Depth to Width, D/B= 0.43 Hence the Foundation is(As per Cl.2.2.5)= Shallow Depth of Water Table, Dw= .000m Depth of Water Table after Base of

Footing, Dw-D= .000m Length of Foundation,L= 3.00m Ratio of Length to Width,L/B= 1.0 Inclination of the load to the vertical in 0 degrees, α =

Code of Foundation= 3 Code: Continuous Strip= Rectangle = 2 Put 1 for raft/well foundation and 0 for 3 Square=

Circle= 4

Layer Details:

others:

Layer No.	Level of different layers(m)		Thickness of Layers above	Cohesion		Density(t/m³)	
	Тор	Bottom	Footing(m)	(t/m ²)	$\phi(^0)$	Bulk	Submerged
ı	0.00	1.10	1.10	2.00	0	1.60	0.60
II	1.10	3.80	0.20	2.90	0	1.84	0.84
III	3.80	16.00	0.00	1.70	0	1.68	0.68

Bearing Capacity Equation:

 $q_d = cN_c s_c d_c i_c + q(N_q - 1)s_q d_q i_q + 0.5B \gamma N_\gamma s_\gamma d_\gamma i_\gamma W'$

Various values taken (when $\phi < 28^{\circ} \& \phi > 36^{\circ}$):

Depth of influence of foundation=0.7xB= 2.10m

0 (in degrees) $\phi_{av=}$ 2.90 t/m^2 C_{av=} 0.00 (in degrees) Ф= 2.90 t/m² C=

0.84 t/m³ γ= N₀= 1 0.83 t/m² q=

Factors:

Shape Factors			Depth Factors			Inclination Factors		
Sc	Sq	Sγ	d _c	d_{q}	d_{γ}	i _c	i _q	İγ
1.30	1.20	0.80	1.09	1.00	1.00	1.00	1.00	0.00

Bearing Capacity Factors:

 $N_c =$ 5.14 $N_q =$ N_v= 0 **Water Table Correction:**

1.300 m (D+B)= 4.300 m $D_w =$ 0.000 m W' = 0.50

21.06 t/m² Net Ultimate Bearing Capacity= Considering Factor of Safety(F.O.S)= 2.5 Net Safe Bearing Capacity to be considered= 8.4 t/m²

<u>Settlement Calculation For Same Foundation:</u>

Code Used: IS 8009(Part-I)-1976

Final settlement, $S_f = S_i + S_c$

 $Si = pB(1-\mu^2)*I/E$

where,p= Foundation pressure= 8.42 t/m^2 B= Width/Diameter of foundation= 3.00 m 1.30 m D= Depth of foundation = 3.00m m L= Length of Foundation = μ= Poisson's Ratio= 0.5 I= Influence Factor= 1.12 C= 2.90 t/m² 1740.00 t/m² E= Modulus of Elasticity =

 $S_c = \Delta p X m_v X H$

where,∆p= Pressure increment,t/m²

m_v= Coefficient of volume compressibility, m²/t

H= Thickness of compressible stratum measured from foundation level ,m

Depth of influence of foundation for settlement=

Deput of initidence of foundation for settlement 0 in											
Layer No.	m _v (m ² /t) for Pressure range (t/m2)										
	0.0	2.5	2.5	5.0	5.0	10.0	10.0	20.0			
ı	0.0000		0.0000		0.	0.0000		0.0000			
II	0.0031		0.0031		0.0026		0.0018				
III	0.0047		0.0047		0.0035		0.0026				

Layer No.	Middle Point of Each Layer from Footing Level(m)	B/2z	L/2z	Influence value, I _B (from Fig.18)	Δp (t/m²)	S _c (mm)
1	0.00	0.00	0.00	0.000	0.00	0.00
II	1.25	1.20	1.20	0.783	6.60	48.98
III	4.25	0.35	0.35	0.197	1.66	27.45

 $\label{eq:mmediate settlement settlement settlement settlement settlement Second Settlement Second Settlement Second Se$

From Fox's Correction Curve Table, depth factor $(d_f) = 0.8625$

Co-efficient due to pore pressure for normally

consolidated soil (λ) = 1 Rigidity Factor Total corrected settlement (S)= 76 mm

Computation of Allowable Bearing Capacity

 $\begin{array}{lll} \mbox{Permissible settlement} & & 75.0 \mbox{ mm} \\ \mbox{Allowable bearing capacity } (\mbox{q}_a) = & 8.3 \mbox{ } t/\mbox{m}^2 \\ \end{array}$